

A Parametric Thoracic Spine Model Accounting for Geometric Variations by Age, Sex, Stature, and Body Mass Index Authors: Lihan Lian, Michelle Baek, Sunwoo Ma, Monica Jones, Jingwen Hu May 22nd, 2023

1

Introduction

- Thoracic spine (T-spine) injury prevention will become more challenging
 - Autonomous driving technology.
 - Reclined sitting position and seat back.
- Literature on T-spine geometry is very limited
 - No study on morphological variations of Tspine in the diverse population.
 - Three most important injury mechanisms: compression, distraction, and axial torque.

Introduction

Parametric human models are needed for safety equity

- Age, stature, BMI and sex are all important factors for risk of injuries.
- Small females, elderly, and people with obesity are more vulnerable in motorvehicle crashes (MVCs) as compared to midsized, young males.

- Develop a statistical thoracic spine model accounting for morphological variations by age, sex, stature, and BMI, based on the data extracted from CT scans.
- To the best of our knowledge, this is the first study that a whole T-spine 3D model can accurately predicted for any given age, sex, stature, and BMI. Our study also revealed the statistical significance of each subject covariate.
- This model could serve as the geometric basis for parametric human modeling for better assessing T-spine injuries and other pathological analysis.

Methods : Overview

- Data collection
- Data extraction
- Statistical analysis
- Final prediction

Methods : Data Collection

- Data collection
 - Total of 84 subjects & subject distribution.
 - Use Mimics to semi-automatically extract T-spine 3D geometry from CT scan and output STL files.
- Purpose
 - Provide non-standard raw data.
 - Output STL files are used to process in HyperMesh.

Methods : Data Extraction

- Data extraction
 - Use a standard model as baseline and landmarked model as target.
 - Morph from baseline model to target model.
- Purpose
 - Make geometry of morphed model as close as possible to target model.
 - Standardize the data for statistical analysis.

Methods : Statistical Analysis

- Generalized-Procrustes-analysis (GPA).
- Principal Component analysis (PCA)
- Linear regression.
- Statistical analysis curvature model
 - Data normalization.
 - Principle Component analysis (PCA).
 - Linear regression.

Methods : PCA

Illustration of PCA

 Decompose a large matrix into product of two smaller matrices:

 $A = U \times V^T$

Where A is original matrix, U is score matrix and V is loading matrix (Principal Component)

- Matrices dimensionality for T1
 - 84 x 1914 nodal location matrix (A)
 - 84 x 83 Scores matrix (U)
 - 1914 x 83 loading matrix (V)

Can select at most 83 PCs (in this case of 84 subjects).

% perform PCA on training subjects; desired output matrices: % coeff(M*(N-1)), score(N*(N-1)), mu(1*M) [coeff,score,latent,tsqured,explained,mu] = ... pca(matrix,'Centered',true, 'NumComponents', k); % Regression % perform regression; calculate C(coefficients for regression) % and F(feature matrix containing training parameters) stature_sex = [input_feature(:,2) .* input_feature(:,4)]; F = [ones(length(input_feature),1) input_feature stature_sex]; C = F\score(:, 1:k);

Methods : Linear Regression

Illustration of linear regression

• Associate PC scores with input human characteristic parameters $U = F \times C$

Where F is the feature matrix used for regression, C is regression coefficient matrix.

- Matrices dimensionality for T1
 - 84 x 83 Scores (U)
 - 84 x 6 feature matrix (F)
 - 6 x 83 regression coefficient (C)

E1	$\bullet \mid fx \mid 0$				
	А	В	С	D	E
1	SubjectID	Age	Height	BMI	Gender
2	FG2S106	23.56	1.7	23.52941176	0
3	FG2S110	28.35	1.65	20.82644628	0
4	FG2S112	29.89	1.82	24.63470595	0
5	FG3S101	38.52	1.71	29.47915598	0
6	FG3S105	38.14	1.49	48.42124229	0
7	FG4S101	45.05	1.67	28.68514468	0
8	FG4S104	41.58	1.57	25.92397257	0

Add	Add due to correlation			
intersection for	between two			
regression	parameters			
Ŭ I	\mathbf{N}			
% perform PCA on training su	bjects; desired output matrices:			
$coeff(M^{*}(N-1))$, score(N*(N)	-1)), mu(l*M)			
<pre>[coeff, score, latent, tsqured,</pre>	explained,mu] = ue, 'NumComponents', k);			
%% Regression				
% perform regression; calcul	ate C(coefficients for regression)			
% and F(feature matrix conta	ining training parameters)			
<pre>stature_sex = [input_featur</pre>	<pre>e(:,2) .* input_feature(:,4)];</pre>			
F = [ones(length(input_featu	re),1) input_feature stature_sex];			
C = F\score(:, l:k);				

Methods : Final Prediction

MATLAB demonstration

- Repeat 12 times and align each vertebra to their corresponding position.
- Can also see the necking effect in the predicted model.

Results : PC Variation

Statistical T-spine model

- PC1 accounts for the overall size variation.
- PC2 and PC3 accounts for the angle variation.

Note:***: < 0.001, **: < 0.01, *: < 0.05, Red: +2STD Blue: -2STD

Results : Vertebral Body Dimension

Vertebral body dimension variation trend

 Width decreases from T1 to T3, and start increases from T4 to T12 (Necking effect)

Disc Height

- Disc height is the gap between the two level of vertebra
- Anterior disc height is bigger than posterior disc height

Wedging Ratio

 Defined by anterior height divided by posterior height

Posterior height

Results : Subject Covariate Effects

Effect of different parameters

- Age has big impact on curvature
- Stature has big impact on length
- Male has larger vertebral size than female
- BMI has relatively small impact

Age: 20 (Red) 80 (Blue) Stature:1.75m BMI:25 Sex: Male Age:45 Stature: 1.55 (Red) 1.95 (Blue)m BMI:25 Sex: Male Age:45 Stature:1.7m BMI:25 Sex: Female (Red) Male (Blue)

Age:45 Stature:1.75m BMI: 20(Red) 40(Blue) Sex: Male

Results : Model Validation

- Leave one out
 cross validation
- Nodal location error
- Accurate & Robust

- Develop a statistical model that can accurately predict a full T-spine model given a set of characteristic parameters.
- Analyze the variation trend of width, height, and depth from T1 to T12 and find the necking effect.
- Demonstrate the effect of different parameters through comparison.
- In this study, all CT scans were collected while subjects were in a supine position. Therefore, the curvature model developed in this study may not be appropriate for representing other postures. The landmarking process was finished by a single person manually and followed by another person checking the landmarking quality. This may potentially introduce errors related to landmark positioning and subsequently impact the morphing results.

- Develop a statistical model that can accurately predict a full T-spine model given a set of characteristic parameters.
- Analyze the variation trend of width, height, and depth from T1 to T12 and find the necking effect.
- Demonstrate the effect of different parameters through comparison.
- We plan to turn this study into a peer-reviewed journal publication this summer.

- The authors would like to thank Anne Bonifas from UMTRI for her support on CT acquisition and segmentation.
- The authors would also like to thank the students from the Multidisciplinary Design Program (MDP) at the University of Michigan for their support of the study.

Thank you !

Any questions ?

Checkout appendix for more detailed explanation

Distribution of subjects that used for the study.

Landmark and curvature model definition.

- Landmark definition Each vertebra has 19 landmarks.
- Curvature definition Use midpoints (color in red) for curvature model, each vertebra has two midpoints

Appendix

Walkthrough of T1 prediction process

 Receive input from user: [Age, Stature, BMI, Sex]

```
Convert to F_{input} = [1 \ 25 \ 1.6 \ 23.5 \ 0 \ 0] (1 x 6)
```

• Use C and V obtained previously to get predicted scores and feature columns.

$$U_{predict} = F_{input} \times C$$

Where C is 6 x 83 and U_{input} (Scores) is 1 x 83
 $A_{predict} = U_{predict} \times V^T$
Where V is 1914 x 83. A is 1 x 1914

- Reshape $A_{predict}$ and plot predicted nodes

Content inside nodal location matrix that used for statistical analysis

Editor - PCAR_T_Spine.m						Variables - t_spine_cell								
	t_spine_cell	×												
{	84x13 <u>cell</u>		0	1		-					1	1		
	1	2	3	4	5	6	7	8	9	10	11	12	13	
1	638x4 double	750x4 double	912x4 double	779x4 double	803x4 double	837x4 double	855x4 double	835x4 double	753x4 double	863x4 double	836x4 double	857x4 double	'FG2S106'	
2	638x4 double	750x4 double	912x4 double	779x4 double	803x4 double	837x4 double	855x4 double	835x4 double	753x4 double	863x4 double	836x4 double	857x4 double	'FG2S110'	
3	638x4 double	750x4 double	912x4 double	779x4 double	803x4 double	837x4 double	855x4 double	835x4 double	753x4 double	863x4 double	836x4 double	857x4 double	'FG2S112'	

🖉 Ec	ditor - PCAR_T_Spine.m									
	t_spine_cell 🛛 🗙	t_spine_cel	t_spine_cell{1, 1} 🔀							
t	_spine_cell{1, 1}									
	1	2	3	4	5					
1	300596	-6.9024	78.5452	175.7676						
2	300597	-6.6523	80.3846	178.3122						
3	300598	-5.8968	78.2736	176.0006						
4	300599	-5.2170	78.1390	176.2391						
5	300600	-5.5886	79.6667	178.3699						
6	300601	-4.7320	78.9304	178.3732						