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Disturbence

 Optimal Feedback Control Approaches: ahind

 LQR can be applied by solving ARE, but it does
not respect to control input constraints.

¢ M PC SUffe rS from high Com pUtationaI bu rden for Source: Control Systems in Practice (YouTube) (MATLAB)
h ig h d i m e N S i O N a | a N d N O N | i N e a r Syste m S O r Consider the followimg Tinal r.mrizon .and free final state LQR probllem desribeld as followg We will
. show that Algebraic Riccati Equation (ARE) can be derived using the previously mentioned
Constralnts- procedures as T' — ©Q.

T
7= [ @@ Qe(t) +u(®) Rule)) de + 3o Ha(t)

* Pontrygain’s Maximum Principle (PMP)

s.t. &= Az(t) + Bu(t)
° PMP provides necessa ry Conditions by Solving where Q > 0, R > 0 and H is a constant positive definite matrix.
two-point boundary value problems (TPBVPs). + Formulate Conlrol Hamitonian:

H(z,u, A\ t) = %(.ETQI + uTRu) + AT (Az + Bu)

 LQR can be viewed as a special case of PMP.

« Construsct state and co-state equations:

* MPC solves finite horizon optimization problem F=Vallim A = Ao+ B
to approximate the solution of the original VoV m e A
optimal control problem (OCP) from PMP.

« Obtaining Optimal w:

Source: From Control Hamiltonian to ARE and PMP (Blog Post)



https://www.youtube.com/watch?v=FW_ay7K4jPE&t=27s
https://lihanlian.github.io/blog-post/
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Motivation:

MPC does not utilize the fact that patterns
from previous solutions may be used to
alleviate the computational burden of
subsequent solutions.

Indirect method typically cannot be used in
real-time.

Related Work

Only for specific initial conditions.

No disturbance in the validation and control
policy is applied in a feedforward way.

Difficult for NN training to converge due to the
design of satisfying input constraints.

2. PROBLEM STATEMENT

We consider continuous time optimal control problems
with fixed initial condition and fixed final time. The cost
functional is in the Bolza form. including both a running
(£) and a terminal cost (¢) in the functional objective (.J)
(Bryson and Ho, 1975):
ty
1'1'131‘1 J = {(x(t), mo(x)) dt + @(z(ty)).
to
s.t. x(t) = flz(t), ma(x), 1), (1)
z(tp) = zo,
g9(z(t), me(z)) <0,

where the time window is fixed ¢t € [tg,¢ _,r], z(t) € R"=
is the state, mg(z) : R™ — R™ is the state feedback
controller and # € R™ are its parameters.

3.3 Control constraints

The controller outputs are box-constrained to U directly
from the nonlinearity of the last activation function of the
policy. We use a custom scaled sigmoid function o(-) : B —
[0,1] for each control component wu;. Then, the last layer
of the policy has the functional form

it [k b},
wi =y A+ (ug™ — uf- Nei(-),

(1) (ub) .
where w, " and u;  are the lower and upper bounds of

the control component, respectively, and i € [1 ..... Ty
By construction, any parameter set in the policy yields a
feasible control sequence satisfying the control constraints.

Source: Neural ODEs as Feedback Policies for Nonlinear Optimal Control.
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ITI. PROBLEM STATEMENT

o . b . For a control affine system, consider the infinite final time
CO ntrl Utlon and fixed final state optimal control problem with quadratic
running cost in continuous time as follows:

« We present a novel perspective of using neural

i _1 v T y T \
networks that learns the mapping from an min /= E/m (=" (0)Qu(t) +u' () Ru(t)) dt,
initial state to its corresponding optimal co- ®

: P & op st @(t) = f(z(t) + glz(t))ult), (8b)
state trajectory. 2(ty) € X (80)
. . . r(ty =00) = xy, 8d
* Instead of handling control input constraints ig;ef) o EBE:
direCtly during the process Of training neural Since we are NOT concerned with!thecontrol input constraints here, the optimal control input «
network' We propose a framework for can be directly obtained by setting the following equation to zero.
handling input constraints by extracting a NN- Vi St A0, = SR
. . . Substitute «* into state equation and put them all together into matrix form:
predicted co-state trajectory and then simply ol T s e
. % _BR-1BT7 Ix*(t
solving a QP. P e
* Realtime feedback validation. e e o e assmpton). s s e e can e e 2o o

A*(t) = P(£)x*(t)

A*(t) = P(8)x*(t) + P(£)x*(¢)

Source: From Control Hamiltonian to ARE and PMP (Blog Post)



https://lihanlian.github.io/blog-post/
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A. Model Predictive Control (MPC)
e Model Predictive Control In practice, when realtime optimal control is needed, (1)

is solved using MPC, or receding horizon control. MPC uses
o Transcribes OCP into an optimization problem the system model to predict the future states of the system

. . . . . . and solve the online optimization problem in a moving
with finite number of decision varlables, falls horizon fashion [5]. First, the continuous system dynamics

into the pa radigm of discretize then Optimize, in (1b) is discretized based on suitable sampling interval to
yield a discrete-time system:

e Solves the similar optimization problem

repetitively in a receding horizon fashion. et = [l w), 2)
* Normally no guarantee for timely convergence, .
especially for nonlinear and high-dimensional Ji(@) = min  Cp(zpp) + D (Tesri k)
systems. o 0 (3a)
* In certain cases, explicit-mpc can be used to st Typppafe = f(Togke Wepnye)s k=0,...,P =1
alleviate the computational burden. (35)
”’f‘l‘-‘i“EH‘ k:[)-.P_l (3':]
Lt = Lty (3d)

ﬂff_|_p|¢ = r‘l}_ir. (3'-5:)
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. .. . B. Pontryagin’s Minimum Principle
* Pontryagin’s Minimum (Maximum) Pontryagin’s Minimum (Maximum) Principle (PMP) is

PrinCiple a fundamental result in optimal control theory, providing
necessary conditions for optimality in systems governed

o Can handle input constraints with the use of co- by differential equations. For the problem in (1), PMP

) . introduces the control Hamiltonian H, defined as:
state and control Hamiltonian.
H(x(t), u(t), A(t),t) = L(z(t), u(t),?)

e PMP transcribes the OCP to a point-wise AT f(z(b),u).t), @
optimization to avoid minimizing over a function
space. where A(t) € R"™ is the co-state (or adjoint) vector. Con-
straints on state variables and co-state variables are then
o Belongs to the pa radigm of Optimize then derived by taking the partial derivatives of H as follows:
] ] : OH
discretize. Bt) = 5, 5)
- oH
A(t) = o (6)
u*(t) = arg min H(x"(t),u(t), A*(1),1). (7)

u(t)eld
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OCP formulation

Multiple initial conditions, uses numerical
solver to compute the optimal solutions off-
line, for each initial conditions.

Uses quadratic running cost function and
formulates the control Hamiltonian.

The optimal solution obtained from numerical
solver is in the unconstrained scenario.

Control input constraint is then imposed by
solving an easier QP.

min J = % _/;: (:r,T{t}Qﬂf(t} + ?;T(t]R-u.{f}) dt,

(8a)

s.t. z(t) = flz(t)) + g(z(t))ul(t), (8b)

z(to) € X (8¢)

z(t; = 00) = xy, (8d)

u(t) e, (8e)

H(x(t),u(t), A(t),t) = %xT(t)Q;r(t) + %u—r(t}ﬂu{t}
FAT() (F(a(®) + gla(®)u(t),

(9)

&(t) = i’—f = f(x(t)) + glz(t))ult), (10)
A6 = -2 quy - (2D)
S Ox J

) T
B (t}y(f(f))”(f)) A(t). (11)

dr
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there are no constraints on the control input, the optimal

® OCP fo rmulation control law can be obtained by setting:
* Multiple initial conditions, uses numerical gf =0, (12)
solver to compute the optimal solutions off- which yields
line, for each initial conditions. () = —R-1g" (2()A*(8). (13)
* Uses quadratic running cost function and When there are constraints, the optimal control input can be
formulates the control Hamiltonian. obtained from:

. . . . * — . . o 1 T * 1 .
* The optimal solution obtained from numerical * () =ars min (5“ () Ru(t) + A" (£)g(z(t))u(?)
solver is in the unconstrained scenario. (14)

L= 5 (@"Qa" +uRu*) + X' (42" + Bu" — ")

 Control input constraint is then imposed by
solving an easier QP. &, = 3 (=7 () Hz"(21)

—A*(tg) + Hz(t5) =0, A'(t5) = Hz(ty)

Thus, the other n boundary conditions come from the costate state equation at the final time and
we need to solve the ARE backward in time to get costate trajectory A*(¢). Then the optimal
control input trajectory w*() can obtained by the preivously derived optmality condition (

u*(t) = —R1BTX*(t)).

Source: From Control Hamiltonian to ARE and PMP (Blog Post)
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I. Use numerical solver to solve Il. Pass in state value at time step k (first lil. Repeat M times to complate step
® N e u ra I N etWO r k TPBVPs for each :r:“" and generate X, in elament ufx:,::r! , ) to CoMM and calculate I far all xh ' 0 ¥ ain
. M pairs of x,.  and A, l loss. Repeat (N — n) times for each x;
Architecture . input Hidden output
(o xn-:rr'.h' 't!rn_,l.n [D] :_ - | LEFEI‘ I_ﬂy‘ers Lﬂyﬁ rs
oo 0 »CoNNf—{ 3[%) L
I dli o E oy
[} 1 ik )
Fully connected linear : : m B s [
. . I |
| aye rs . T I_Fr_sl:liiﬁo_n Euri_znﬂln_:l I

"% [ it
Total size et Rena?

* |Input is state (x), 00 [fieeelioee N v
output is a vector : M EEN :
with the size of NI megson | Loty
predefined prediction v =0 N T Mtate GoNm Architecture
horizon. ——— L
o Esse ntiaIIy learn a Fig. 1: CoNN architecture and training prnccdure:tzﬁilllus[ratcd for ;" € R, Vi, same as the one-dimensional system shown

in the Sec. V. Note that the index [j] denote the j** entry of the trajectory starting from 0.

mapping from state
to its corresponding
optimal co-state
trajectory.
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Algorithm 1 CoNN Training Procedures

* Traini nNg Procedures 1. procedure TRAINING SET GENERATION

2: Define set of initial conditions X, prediction
o Prediction loss horizon n, total time steps N >n

3: For &’ € Xy, do

1 ) 4: Solve the TPBVP results from Eq. (8) and PMP

(i,k) 1 (ik) . (3,k) [ . : o
"{:I]:rrcclii'rinn - Z (Atmp..-t[i'] - '}"'1'r:+j.a]1 I?]) ' {16} b}l numerical S(_)h-Ll"S . . (i)
g 5: Store optimal state solution trajectory @, y
6: Store optimal co-state solution trajectory Jufrg N
. C . . | 7: End for
OntanIty 0SS 8: procedure CONN TRAINING
9: Define total training epochs Npocn, learning rate o
and initialize CoNN parameters #
it—2 - . BN AN
plik) 1 2K 1 g (i.k+1) Y o For ¢ lnn"]“”'qﬁ,{ Negoch) do
continuity — " Z Tipaj, N W T ] ~ T int,n .J] [1: For 7, € X do
j=0 12: For k in range(N —n) do
n—2 ; 13: Get A"F) and zltM)
~ [ =lik), . (ikt1) s 2 * “Mraj. n traj, n
T (A aj, 1 [_,f + 1] —A raj-nt,mn [.JI]) ' {1?} y (1K) (2,k) 1
‘%{J tra), tra)ant, 14: )h'-l'ii.i-ﬂ — CDN.I:]?I:EWHJ-I n[[]” "
15: Calculate ﬁ;‘,;d-l,im and L% . based on
Eqgn. (16) and (17)

16: Update CoNN parameters ¢
17: End for
18: End for

19: End for
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* Control Input Constraints Handling

* Only extract the first element from the
predicted optimal co-state trajectory.

* Solve a much easier QP to obtain optimal
control input that satisfy both constraints and
optimality.

e CoNN-based Controller Validation

* In areal-time feedback control loop manner.

* Including disturbance, unseen initial conditions
(not in the training data set).

e

1 :
u; = arg min (iugRuk + (Aaj,n [0])Tg(3:(t))?.zk) :

(18a)

< k
St Aggjn = CONNg(p), (18b)
u € U. (18c)

I Disturbance

j:[Tu,‘.Tl [{]] Input Li+1

QP
CoNN-based Controller

I
I
I
I
CoNM Constrained [~ Plant
I
I
i
I

Maasurameant

Fig. 2: CoNN-based controller block diagram for validation.
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V. EXAMPLE

Consider the following one-dimensional nonlinear optimal
control problem in continuous time that has quadratic run-

e One-Dimensional OCP

. . . ning cost:
* Nonlinear, box constraints on control input. o 1oL [T a o
* Multiple initial conditions, ranging from [-5, 5] st E=—2’+ztu, (19b)
with 0.1 resolution. o 5 :I'gd:
T =1, (19e)

 Code in Python. Use scipy.solve _bvp function
as the numerical solver for TPBVPs.

where Xymin. 15 chosen to be [—5.0,5.0] for the range of
initial conditions that produce TPBVPs. A total of 101 data
points were sampled uniformly within the range of X,

Based on PMP, the control Hamiltonian H can be ex-

cod e OH
pressed as follows: ;}”* =u"+ A" =0, (23)

1, 1, 2,
H=§.r ——ir.t -I—J'.l:—.z + I ——ujl. (20)

ut = =A" (24)

We can then derive the differential equation that optimal state

and costate should follow:

ek ﬁ — _p*2 -+ * (21
= 5% = -7 1 T )
=0 o i), @)

dx

When there are control input constraints, the optimal control
input should minimize the control Hamiltonian H. For this
problem formulation, H is a quadratic function of u, thus,
the optimal control policy can be obtained by simply saturate
the unconstrained optimal control input:

u* = Sat’me(— X%, (25)
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* Unconstrained Control Input
with Unseen x,

* Xxp=-10and x, = 20.

 Both model trained with (CoNN(cl))
and without (CoNN) continuity loss
make system converge to zero.

* Model trained with continuity loss is
more conservative.

State x(t)

—10-

—

State x(t

T e v e v

Xsolve_bvp

XCoNN

XCoNN(cl)

2 4 6 8 10

Time (seconds)

200

—
Ut
o

—
=]
o

Control Input u(t)

W]
<o

Usolve_bvp

UCoNN

UCoNN(cl)

20.04
17.51
15.01
12.51
10.01
7.5
5.04
2.5
0.04

= Xsolve_bvp
XCoNN
=== XCoNN(cl)

—._-———————-—-
-

Control Input u(t)
)

Time (seconds)

0 2 4 6 & 10

Time (seconds)

= Usolve_bvp
UCoNN
=== UCONN(cl)

0 2 4 6 8 10

Time (seconds)
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O’ _J:O,
- = Usolve_bvp
* Constrained Control Input -1y i =30] —Sn)
! Te= CasADi
5 i £ 251
* Xg = —4 Efz- i 5%20 3
¢+ —201<u<201 ol T e 2V
. . . T XCoNN(cl) ; ',
* Used direct collocation with ! L = | %o 5 L
tra!oezoidal ap_pr_oximal as thg PR BRI ST L ”.';";"'S"'lg
trajectory optimization algorithm. Time (seconds) Time (seconds)
Used CasADi as optimization solver for 2001 T 15071 _ —
. . _15.0- XGoNN(el) (%0 4) UCoNN(el) (20 1)
direct method solution. 00, Xeawi(o0 =20) || Ugonn ey (0 = 20)
. : : £ 50 4 == Xugalr="0) oty
* Validation with Disturbance NN~ Sl — 3 |1
50z | | | oA S0
—_— —_ 0.0 20 40 60 80 100 ¢ i
® xO -_— 4‘ and xO - 20 Time (seconds) 'g 0.01 I‘ " |
. . . g 2.0 o - \ I\
 Disturbance are applied at five £10 | | | | N\
o = 0.0 d )
timesteps . 10 | | S i Sy
R-200 20 40 60 80 100 00 20 40 60 80 100

Time (seconds) Time (seconds)
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Future Work

 Improve the neural network architecture to be

better at handling high-dimensional systemes.

* Integrate state constraints into the design of

the loss function.

* Provide a comprehensive algorithmic

benchmark for MPC and reinforcement
learning algorithms, addressing aspects such
as sampling efficiency, real-time
computational complexity, and performance
metrics (e.g., objective cost function).

3.2 THE CART-POLE SYSTEM

The other model system that we will investigate here 15 the cart-pole system, in which the task 1s to
balance a simple pendulum around its unstable equilibrium, using only horizontal forces on the
cart. Balancing the cart-pole system is used in many introductory courses in control, including
6.003 at MIT, because it can be accomplished with simple linear control (e.g. pole placement)
techniques. In this chapter we will consider the full swing-up and balance control problem, which
requires a full nonlinear control treatment.

Figure 3.2 - The Cart-Pole system. Click here to see a real robot.

The figure shows our parameterization of the system. = 15 the horizontal position of the cart, # 1s the
counter-clockwise angle of the pendulum (zero is hanging straight down). We will use q = [z, Q]T._
and x = [q, g7 The task is to stabilize the unstable fixed point at x = [0, 7,0, 0]%.

Source: Underactuated Robotics (Prof. Russ Tedrake)



https://underactuated.mit.edu/acrobot.html
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Thank you!

Any questions ?




