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Preliminary

• Optimal Feedback Control Approaches:

• LQR can be applied by solving ARE, but it does 
not respect to control input constraints.

• MPC suffers from high computational burden for 
high dimensional and nonlinear systems or 
constraints.

• Pontrygain’s Maximum Principle (PMP)

• PMP provides necessary conditions by solving 
two-point boundary value problems (TPBVPs).

• LQR can be viewed as a special case of PMP.

• MPC solves finite horizon optimization problem 
to approximate the solution of the original 
optimal control problem (OCP) from PMP.

Source: Control Systems in Practice (YouTube) (MATLAB)

Source: From Control Hamiltonian to ARE and PMP (Blog Post)

https://www.youtube.com/watch?v=FW_ay7K4jPE&t=27s
https://lihanlian.github.io/blog-post/


Introduction

• Motivation:

• MPC does not utilize the fact that patterns 
from previous solutions may be used to 
alleviate the computational burden of 
subsequent solutions.

• Indirect method typically cannot be used in 
real-time.

• Related Work

• Only for specific initial conditions.

• No disturbance in the validation and control 
policy is applied in a feedforward way.

• Difficult for NN training to converge due to the 
design of satisfying input constraints.

Source: Neural ODEs as Feedback Policies for Nonlinear Optimal Control.



Introduction

• Contribution

• We present a novel perspective of using neural 
networks that learns the mapping from an 
initial state to its corresponding optimal co-
state trajectory.

• Instead of handling control input constraints 
directly during the process of training neural 
network, we propose a framework for 
handling input constraints by extracting a NN-
predicted co-state trajectory and then simply 
solving a QP.

• Realtime feedback validation.

Source: From Control Hamiltonian to ARE and PMP (Blog Post)

https://lihanlian.github.io/blog-post/


Background

• Model Predictive Control

• Transcribes OCP into an optimization problem 
with finite number of decision variables, falls 
into the paradigm of discretize then optimize.

• Solves the similar optimization problem 
repetitively in a receding horizon fashion.

• Normally no guarantee for timely convergence, 
especially for nonlinear and high-dimensional 
systems.

• In certain cases, explicit-mpc can be used to 
alleviate the computational burden.



Background

• Pontryagin’s Minimum (Maximum) 
Principle

• Can handle input constraints with the use of co-
state and control Hamiltonian.

• PMP transcribes the OCP to a point-wise 
optimization to avoid minimizing over a function 
space.

• Belongs to the paradigm of optimize then 
discretize.



Problem Statement

• OCP formulation

• Multiple initial conditions, uses numerical 
solver to compute the optimal solutions off-
line, for each initial conditions.

• Uses quadratic running cost function and 
formulates the control Hamiltonian.

• The optimal solution obtained from numerical 
solver is in the unconstrained scenario.

• Control input constraint is then imposed by 
solving an easier QP.
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Methodology

• Neural Network 
Architecture

• Fully connected linear 
layers.

• Input is state (x), 
output is a vector 
with the size of 
predefined prediction 
horizon.

• Essentially learn a 
mapping from state 
to its corresponding 
optimal co-state 
trajectory.



Methodology

• Training Procedures

• Prediction loss

• Continuity loss



Methodology

• Control Input Constraints Handling

• Only extract the first element from the 
predicted optimal co-state trajectory.

• Solve a much easier QP to obtain optimal 
control input that satisfy both constraints and 
optimality.

• CoNN-based Controller Validation

• In a real-time feedback control loop manner.

• Including disturbance, unseen initial conditions 
(not in the training data set).



Example

• One-Dimensional OCP

• Nonlinear, box constraints on control input.

• Multiple initial conditions, ranging from [-5, 5] 
with 0.1 resolution.

• Code in Python. Use scipy.solve_bvp function 
as the numerical solver for TPBVPs.



Example

• Unconstrained Control Input 
with Unseen 𝑥0

• 𝑥0 = -10 and 𝑥0 = 20.

• Both model trained with (CoNN(cl)) 
and without (CoNN) continuity loss 
make system converge to zero.

• Model trained with continuity loss is 
more conservative.



Example

• Constrained Control Input

• 𝑥0 = −4

• −20.1 ≤ 𝑢 ≤ 20.1

• Used direct collocation with 
trapezoidal approximal as the 
trajectory optimization algorithm. 
Used CasADi as optimization solver for 
direct method solution.

• Validation with Disturbance

• 𝑥0 = −4 and 𝑥0 = 20

• Disturbance are applied at five 
timesteps .



Conclusion

• Future Work

• Improve the neural network architecture to be  
better at handling high-dimensional systems.

• Integrate state constraints into the design of 
the loss function.

• Provide a comprehensive algorithmic 
benchmark for MPC and reinforcement 
learning algorithms, addressing aspects such 
as sampling efficiency, real-time 
computational complexity, and performance 
metrics (e.g., objective cost function).

Source: Underactuated Robotics (Prof. Russ Tedrake)

https://underactuated.mit.edu/acrobot.html


Thank you!

Any questions ?


