MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

MECHENG 599 Final Project
Presentation

Robot Motion Planning Using Model Predictive Control
and Control Barrier Function

Lihan Lian

Methodology (CBF)

UNIVERSITY OF MICHIGAN

* Control Barrier Function (CBF)

* Define safe set C using the control barrier
function h(x).

« Link control input to safety constraints by using
the Lie derivatives.

« Works for control affine systems.

x=f(x)+gu
where a is an extended class K infinity
function.

sup [Lsh(z) + Lgh(z)u] > —a(h(z)).
ucelU

For safety-critical control, we consider a set C defined as
the superlevel set of a continuously differentiable function
fi: X CR" < R

C={xe X CR":hix) =0} (4

Throughout this paper, we refer to C as a safe set. The
.
function £ is a control barrier function (CBF) [1] if — Z0
. i
for all x € &C and there exists an extended class K

function ~ such that for the control system (1), i satisfies

Tu st hlxu) = —~(h(x))., v K. (5)

This condition can be extended to the discrete-time domain
which is shown as follows

Ah(xpug) = —vhix), 0= <1, (&)

tB(x)

Source: Jason Choi - “Introduction to Control Lyapunov
Function and Control Barrier Function” (YouTube)

https://www.youtube.com/watch?v=_Tkn_Hzo4AA&t=2392s
https://www.youtube.com/watch?v=_Tkn_Hzo4AA&t=2392s

Problem Formulation

Dynamics and Cost Function Constraints

e Nonlinear dynamics e Nonlinear state constraint must
; o] S be satisfied
9 (%
y — v Sin 6 — Sine 0 [] \/(Tﬂk[[}] - xobs)z + (Tt|k[1] - mob&)Q — Tobs — Trob = 0
0 w
0 w 0 1

e Adjustable tolerance of error

adratic stage cost
° Qu ! J achieved by MPC-CBF

E+N-—-1 . .
| A(uge) = 1/ @0k l0] = Ton)? + @k (1] = Ton)? — Tons —
J*(:L‘k) — min E , [(3'7!,|k . Igan)TQ(-TL\k . -rﬂg(mi!) (Tt\k) (Tt|k[)] Tobs)? + (T.',|k[| = Zobs) Tobs — Trob
t=k Ah‘(mf.\k) 2 _’Yh(37L|k)

T
+ “.e|kR“L|k]

+ (TrynNk — mgoaz)TP($k+N|sc — Zgoal)

Implementation for Two Obstacles

» Validation of Both Algorithms

- In a feedback control loop manner.

(m)

- Based on shooting methods (ipopt). (N = 25, dt =
0.02sec, y = 0.8)

- Same Euclidean distance function (control barrier
function) and safe distance are used for MPC-CBF.

* Implementation Details
* Two static obstacles, x0 = [0,0,0], x_goal = [10,0,0].

* Implemented in Python 3.10, use CasADi as
optimization solver. Tested on Ubuntu OS.

ion (m)

* Code is available at github (motion-planning-mpc).

X position (m)

MPC - CBF

https://github.com/lihanlian/motion-planning-mpc/tree/main

e MPC-DC

. Q= np.diag([100,100,10]), R = np.diag([0.1,0.1]), H =
30*Q

- state_min =0, -3.5, -3.14], state_max = [10,3.5,3.14]
. vmn=-2,vmax=2,w_ min=-1,w_max=1

- Euclidean distance is used to directly enforce the
safety constraints.

- Take around 6 seconds to reach the goal.

- Tends to be more aggressive and resulting trajectory is
relatively closer to the obstacles.

Example (MPC-DC)

UNIVERSITY OF MICHIGAN

X (m)

e o~ o B
\
8
Y (m)
o o
g R

theta

o
S8R %8S%
o
@ I
=3
3
&
Lns
8
Y (m)

Control Input

State Trajectories (x, y, theta)

5555555

0000000
Time (s)

087w xy_traj |
0.6 |
0.4 |
0.2 |
0.0 |
~02 |
_0.4 |
0 2 10

0000000

4 6
X (m)

m—_MPC

w_mpc

2 3 4
Time (s)

Example (MPC-CBF)

UNIVERSITY OF MICHIGAN

State Trajectories (x, y, theta)

« MPC-CBF —/ =
» Q= np.diag([100,100,10]), R = np.diag([0.1,0.1]), H = 3 :

30*Q T T Tmets L Tmets)
- state_min =[O0, -3.5, -3.14], state_max = [10,3.5,3.14]

. v.mn=-2,vmax=2,w_min=-1,w_max=1

X (m)
Y (m)

theta
}I
g

Y (m)
AR EE,
5'

0000000

« Euclidean distance is used as the control barrier
function to enforce the safety constraints.

- Take around 18 seconds to reach the goal (y = 0.8).

- Tends to be more conservative. Resulting smaller

control input at the beginning and relatively further from
the obstacles.

Control Input

75 10.0 12.5
Time (s)

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

Thank you!

Any questions ?

