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Methodology (CBF)
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* Control Barrier Function (CBF)

* Define safe set C using the control barrier
function h(x).

« Link control input to safety constraints by using
the Lie derivatives.

« Works for control affine systems.

x=f(x)+gu
where a is an extended class K infinity
function.

sup [Lsh(z) + Lgh(z)u] > —a(h(z)).
ucelU

For safety-critical control, we consider a set C defined as
the superlevel set of a continuously differentiable function
fi: X CR" < R

C={xe X CR":hix) =0} (4

Throughout this paper, we refer to C as a safe set. The
. . . . . .
function £ is a control barrier function (CBF) [1] if — Z0
. i
for all x € &C and there exists an extended class K

function ~ such that for the control system (1), i satisfies

Tu st hlxu) = —~(h(x))., v K. (5)

This condition can be extended to the discrete-time domain
which is shown as follows

Ah(xpug) = —vhix), 0= <1, (&)

tB(x)

Source: Jason Choi - “Introduction to Control Lyapunov
Function and Control Barrier Function” (YouTube)



https://www.youtube.com/watch?v=_Tkn_Hzo4AA&t=2392s
https://www.youtube.com/watch?v=_Tkn_Hzo4AA&t=2392s

Problem Formulation

Dynamics and Cost Function Constraints

e Nonlinear dynamics e Nonlinear state constraint must
; o] S be satisfied
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e Adjustable tolerance of error

adratic stage cost
° Qu ! J achieved by MPC-CBF
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Implementation for Two Obstacles

» Validation of Both Algorithms

- In a feedback control loop manner.

(m)

- Based on shooting methods (ipopt). (N = 25, dt =
0.02sec, y = 0.8)

- Same Euclidean distance function (control barrier
function) and safe distance are used for MPC-CBF.

* Implementation Details
* Two static obstacles, x0 = [0,0,0], x_goal = [10,0,0].

* Implemented in Python 3.10, use CasADi as
optimization solver. Tested on Ubuntu OS.

ion (m)

* Code is available at github (motion-planning-mpc).

X position (m)

MPC - CBF


https://github.com/lihanlian/motion-planning-mpc/tree/main

e MPC-DC

. Q= np.diag([100,100,10]), R = np.diag([0.1,0.1]), H =
30*Q

- state_min =0, -3.5, -3.14], state_max = [10,3.5,3.14]
. vmn=-2,vmax=2,w_ min=-1,w_max=1

- Euclidean distance is used to directly enforce the
safety constraints.

- Take around 6 seconds to reach the goal.

- Tends to be more aggressive and resulting trajectory is
relatively closer to the obstacles.

Example (MPC-DC)
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Control Input

State Trajectories (x, y, theta)
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Example (MPC-CBF)
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State Trajectories (x, y, theta)

« MPC-CBF —/ =
» Q= np.diag([100,100,10]), R = np.diag([0.1,0.1]), H = 3 :

30*Q T T Tmets L Tmets)
- state_min =[O0, -3.5, -3.14], state_max = [10,3.5,3.14]

. v.mn=-2,vmax=2,w_min=-1,w_max=1

X (m)
Y (m)

theta
}I
g

Y (m)
AR EE,
5'

0000000

« Euclidean distance is used as the control barrier
function to enforce the safety constraints.

- Take around 18 seconds to reach the goal (y = 0.8).

- Tends to be more conservative. Resulting smaller

control input at the beginning and relatively further from
the obstacles.

Control Input
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Thank you!

Any questions ?




