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Abstract—Motion planning is one of the most common
task for robotics system and safety is often the most impor-
tant condition that needs to be satisfied. Model Predictive
Control (MPC) is known for its capability of handling
operational constraints, and it computes the optimal control
input by solving constrained optimization problem in a
receding horizon fashion. MPC has been widely used for
robot motion planning problem since it can take account of
the dynamical constraints, actuator limit, state bound and
so forth. However, safety still remains a critical challenge
since MPC can still suffer from problems such as high
computational cost and loss of recursive feasibility in
some situation. Control Barrier Function (CBF) is another
technique that has been widely used for safety critical tasks.
CBF ensures the safety by linking the control input and
safety constraints through its Lie derivative. In this study,
2D double-integrator model is used as the robotic model
and both MPC, CBF and their combination are studied in
the context of motion planning.

I. INTRODUCTION

A. Motivation

Safety-critical motion planning is one the most funda-
mental task in the field of robotics. From robot arm to
legged robot, or from autonomous vehicle to unmanned
aerial vehicle (UAV) and so forth, many of their tasks
essentially boil down to planning and executing one or
more safe and optimal paths from one place to another.
Having robot violate the safety constraint (collision with
obstacles or passengers) can be a huge loss both in
terms of economy and human safety. Therefore, research
on safety-critical motion planning algorithm is indeed
critical.

With the improvement of hardware performance en-
abling more complex and intensive online computation,
MPC has become more and more popular in the industry.
Moreover, hardware advancement also accelerates the
development of deep learning, which give birth to many
powerful and popular products like chatGPT. Many
researchers are now working on utilizing the power
of generative model to bring MPC further to the next
milestone. All these factors make MPC both a hot
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research area and practical tool in the industry, especially
in the field of robotics.

CBF is another powerful techniques that utilize nice
math properties to achieve safety guarantee in a brilliant
way. For a control affine system, once an appropriate
CBF is found, it can then be used for many safety-critical
task with provably safety guarantee. CBF is often used
together with Control Lyapunov Function (CLF), which
is a technique to ensure system stability. Both CBF and
CLF are becoming more popular in the field of robotics
research for the past decade.

This project aims to study these important techniques
and have a deeper understanding by solving problems
through code implementation. All implementation is in
python. CasADi is used as the optimization toolbox and
matplotlib is the library used for plotting figures.

B. Related Work

1) Model Predictive Control: MPC has been widely
used for many roboitcs application and motion planning
is one of the majors task where MPC can play an
important role for various kinds of robot. There is study
on using MPC with Bezier Curves for autonomous
driving [1]. Nonlinear MPC is used together with Auge-
mented Lagrangian for solving real-time robot arm mo-
tion planning task as shown in [2]. For legged robot,
resarcher also proposed an unified MPC framework for
whole-body dynamics locomotion and manipulation [3].
However, most literature use Euclidean distance between
the robot and obstacle to ensure safety constraints, which
will be called MPC-DC in the later section of this report.
This motivates the study on the using the CBF approach
and its combination with MPC.

2) Control Barrier Function: CBF is becoming more
popular and it tends to appear more frequently in the
robotics research literature in recent years as well. The
application of CBF-based quadratic program has been
demonstrated in the domain of adaptive cruise control
[4]. Combination of CBF and MPC has been systemat-
ically investigated for the discrete-time control system
[5]. There is also study that uses CBF to ensure multi-
layered safety for legged robot along with the use of
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MPC [6]. The advancement of deep learning also enrich
the study of CBF, [7] studied the use of CBF for end-
to-end deep reinforcement learning to solving safety-
critical continuous control tasks. Data-driven, machine
learning based approach to reduce model uncertainty
and improve safe behavior of system utilizing CBF is
also investigated [8]. Due to the time constraint, only
model-based approach will be discussed and learning-
based approach is beyond the scope of this project.

C. Paper Structure

The report is organized as follows: in section II, I will
introduce the specific problem that will be solved and
provide a brief introduction to both MPC and CBFs. In
section III, formulation of different types of algorithms
for the problem that utilize either MPC or CBF will
be given. Section IV provides figures and discussion of
each algorithms. Finally, section V concludes the report
and share final thought on further investigations and
improvement can be done.

II. PROBLEM STATEMETN

Robot Dynamics and Task

In this project, a 2D double-integrator model is used
for modeling robot dynamics, since double-integrator is
commonly used for modeling wheeled robot and this
grounded robot is moving in a 2D plane. The state space
contains fours state variables:

x = [x, y, ẋ, ẏ]T (1)

where x, y are the position at x and y axis, ẋ and ẏ are the
velocity in the x and y direction. For a double-integrator
model, the control input is acceleration, and we are only
able to observe the robot positional information. Thus,
the state space equations are shown as follows:

xk+1 = Adxk +Bduk, (2)

yk = Cxk (3)

where Ad and Bd are the matrices in discrete time that
corresponding to the matrices Ac and Bc of a 2D double-
integrator model in continuous time. In this project, the
sampling time is chosen to be 0.1 second.

There are two scenarios been studied. In both cases,
robot starts from the origion (0,0) with zero initial
velocity, and the goal state are both (10,10) with zero
velocity. For the first case, there is only one static
obstacle, which is circuluar and centered at (5,5) with
radius of 2m. In the second case, there are two obstacles.
First obstacle is static and it is centered at (2,4) with
radius of 2m. Second obstacle is moving horizontally at
y = 6m and has radius of 1m. It starts from (7,6) and
moving toward point (9,6), it will go back to (7,6) once
reach (9,6) and moves repeatedly in the same pattern

with a speed of 1m/s. The robot is also circular and has
radius of 0.5m.

Model Predictive Control

MPC is essentially a control algorithm that solves
optimal control input by solving an optimization problem
at each time step in a receding horizon fashion. The
prediction horizon N is often set in advance, and the cost
function J is a function of state variable x and control
input u at time step k = 0 . . . N as shown follows:

u∗ = min
k0:N−1,u0:N−1

J(xk, uk)

s.t. xk+1 = Adxk +Bduk,

umin ≤ uk ≤ umax,

where xk+1 = Adxk + Bduk stands for the constraints
of system dynamics and umin ≤ uk ≤ umax stands for
the constraints on actuator limits. Normally there will
also be constraints such as g(x) that imposes constraints
to ensure conditions like safety, and both constraints for
initial and goal state will also need to be satisfied. Once
the control input u is solved, it is applied at time step k =
0, and then a new optimization problem will be solved
from horizon k = 1 . . . N +1 to provide control input at
time step k = 1. In this way, the constrained optimization
problem is solved in a receding horizon fashion and the
output (u*) is only been applied at the starting time step.

Control Barrier Function

CBF is a technique that guarantee safety through the
use of set invariance, i.e., not leaving a safe set. Let’s
consider a safe set C defined as the superlevel set of a
continuously differentiable function h : D ⊆ Rn → R,
yielding:

C = {x ∈ D ⊆ Rn : h(x) ≥ 0}, (4)
∂C = {x ∈ D ⊆ Rn : h(x) = 0}, (5)

Int(C) = {x ∈ D ⊆ Rn : h(x) > 0}. (6)

For a control affine system define as below:
ẋ = f(x) + g(x)u (7)

with f and g are both locally Lipschitz. To ensure safety
(state x stays within safe set C), the following condition
needs to be satisfied based on [9]:

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)). (8)

for all x ∈ D where α is an extended class K∞ function.
In this project the α is chosen to be a scalar with in the
range of [0, 1], same with the paper [5].

III. METHODS

Two different algorithms are used for robot motion
planning task in this study. There are two cases, first
case contains only static obstacle and second case has
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both static and moving obstacle. In both cases, the
purpose of the robot is to navigate to the goal state while
successfully avoid collision with obstacle.
MPC-DC

MPC-DC uses the euclidean distance directly, and
impose it as the safety constraint for the optimization
problem. The formulation is shown as follows:

J∗
k (xk) = min

uk:k+N−1

N−1∑
k=0

(
(xk − xgoal)

TQ(xk − xgoal)

+ uT
kRuk

)
+ (xN − xgoal)

TH(xN − xgoal)

s.t. xk+1 = Adxk +Bduk k = 0, . . . , N − 1

g(xk) ≥ 0, k = 0, . . . , N − 1

umin ≤ uk ≤ umax k = 0, . . . , N − 1

x0 = xstart

where g(xk) is the function that describe the euclidean
distance between the robot and the obstacle. Q and
R are the constant matrics that assign the weight of
penalty to the difference between the current state and
goal state and the control input. H is the matrix used
to assign terminal cost.

MPC-CBF
MPC-CBF also uses the euclidean distance, but it uses

the euclidean distance to first formulate a CBF, then
uses the CBF to impose the safety constraint for the
optimization problem. The formulation of MPC-CBF is
shown below:

J∗
k (xk) = min

uk:k+N−1

N−1∑
k=0

(
(xk − xgoal)

TQ(xk − xgoal)

+ uT
kRuk

)
+ (xN − xgoal)

TH(xN − xgoal)

s.t. xk+1 = Adxk +Bduk k = 0, . . . ,N−1

Lfh(xk)+Lgh(xk)u ≥ −γ(h(x)) k = 0, . . . ,N−1

umin ≤ uk ≤ umax k = 0, . . . ,N−1

x0 = xstart

where h(xk) is the control barrier function which is
the same as the euclidean distance function defined in
MPC-DC algorithm. Lfh(xk) is the Lie derivative of
function h(x) along the vector field f and Lgh(xk) is
the Lie derivative of function h(x) along the vector field
g. The function γ is an extended class K∞ function
and scalar values are used for code implementation
(γ = 0.2, 0.5, 0.7, etc.). Q, R and H are the same weight
matrices as defined in the MPC-DC algorithm.

Fig. 1: Planning results using MPC-DC in Case I.

IV. DISCUSSION

Case I. One Static Obstacle

In the first case, the only obstacle is static and it
is centered at (5,5) with radius of 2m. For MPC-DC
algorithm, from table I and Fig 1 we can see, at all cases
of N , the robot will not be able to fully avoid collision
with obstacle (glancing collision with obstacle edge). In
addition, as the prediction horizon increasing, the total
time for finishing traveling is decreasing.

All MPC-CBF algorithms are tested with the predic-
tion horizon N = 10. It is clear that it is more good
at avoiding obstacle as shown in Figure 2. It is able to
avoid the collision earlier and the smaller the value of
γ, the further it will be from the obstacle.

Horizon Time Total Cost Collision Avoidance

N = 5 10.8 780260 Barely

N = 9 8.6 901565 Barely

N = 13 7.8 908592 Barely

N = 20 7.2 650552 Barely

TABLE I Comparison on the performance of different
prediction horizon of MPC-DC algorithm in case I.

γ Time Total Cost Collision Avoidance

γ = 0.2 7.2 962287 ✓

γ = 0.5 7.4 946826 ✓

γ = 0.7 8.0 1104570 ✓

γ = 0.9 7.7 988671 ✓

TABLE II Comparison on the performance of different
hypermarater γ of MPC-CBF algorithm in case I.



4

Fig. 2: Planning results using MPC-CBF in Case I.

Fig. 3: Planning results using MPC-DC in Case II.

Case II. One Static and One Moving Obstacle

In the second case, with the existence of both static
and moving obstacle, MPC-DC algorithm still fails to
avoid collision with obstacle at all cases of prediction
horizon N . It shows the similar trend for travel time
and total cost as in case I. As the prediction horizon
increasing, the total time for finishing traveling tends to
decrease and the total cost tends to increase.

All MPC-CBF algorithms are again tested with the
prediction horizon N = 10 and it is still obvious that
CBF helps robot to become more good at avoiding
obstacle as shown in Figure 4. Smaller value of γ will
result in longer time for travel and increase of total
cost, but they failed to avoid collision with the dynamic
obstacle (γ = 0.2, 0.5) as shown in Table IV.

V. CONCLUSION

In conclusion, this project studied both the concept of
MPC and CBF through implementing the solution of two
specific problems using python and CasADi. MPC-DC
utilizes the euclidean distance as the safety constraints

Fig. 4: Planning results using MPC-CBF in Case II.

Horizon Time Total Cost Collision Avoidance

N = 5 10.8 752102 ×
N = 8 7.0 599406 ×

N = 13 7.5 643789 ×
N = 20 7.8 644428 ×

TABLE III Comparison on the performance of different
prediction horizon of MPC-DC algorithm in case II.

directly and it is easier both in terms of formulation
and implementation. MPC-CBF has a more complex
formulation as it requires choosing an appropriate CBF
at first, and then the value of hyperparameter γ might
need tunning for better performance. In the case of
2D double-integrator model, CBF helps the robot to
avoid collision with obstacle in both two cases. Further
study can be extending to a more complex nonlinear
plant model, investigating learning method or adding
disturbance and noise and so forth. In addition, another
CBF-based method (CBF-QP) can be explored, which
requires a nominal controller and the cost function is
simply a quadratic term of the difference between actual
controller input and nominal controller input.

γ Time Total Cost Collision Avoidance

γ = 0.2 11.7 2405130 ×
γ = 0.5 11.4 2016030 ×
γ = 0.7 8.7 1226210 ✓

γ = 0.9 8.8 1190030 ✓

TABLE IV Comparison on the performance of different
hypermarater γ of MPC-CBF algorithm in case II.
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