
Iterative Learning Control for Trajectory Tracking with Model
Mismatch

Lihan Lian*, Hangfei Li†

Abstract—Model predictive control (MPC) is a power-
ful technique that can be used for various applications
including trajectory tracking. However, MPC requires an
accurate model of the system and long enough prediction
horizon to achieve good performance. Although variations
of MPC like stochastic MPC and robust MPC can alleviate
problem to a certain degree, they still more or less rely
on the knowledge of system models, disturbance and noise.
MPC can also suffer from high computational cost or loss of
recursive feasibility, particularly in the case of existence of
model mismatch (actual system model is different from the
model used by controller). Iterative learning control (ILC)
is another technique that can be used for improving system
performance (reduce tracking error) for repetitive task.
ILC is known for its capability of learning from previous
history (iterations of tasks) and less reliance on the model
accuracy. In this study, we use both MPC and different ILC
algorithm for a trajectory tracking problem with model
mismatch, then analyze and compare their performance.
Criterion on the degree of model mismatch to guarantee
error convergence is also studied for model-based ILC.

I. INTRODUCTION

A. Motivation

The ability to accurately follow predefined paths, or
trajectory tracking, is fundamental to various robotics
tasks. From robotic arms doing high precision manufac-
turing (i.e. 3D printing), to mobile robots transporting
cargo between fixed waypoints, all these tasks can be
boiled down to tracking the trajectory obtained from
high-level motion planning algorithm. While motion
planner plays an important rule, low-level controller
is the crucial component that get any task completed.
Thus, designing of robust and efficient control algo-
rithm to achieve good trajectory tracking performance
is paramount in many robotics application.

Model Predictive Control (MPC) is widely used for
problems such as motion planning, trajectory tracking
and so forth. By using assumed model to predict future
state, MPC computes the optimal control input by solv-
ing constrained optimization problem online.Typically,

*Department of Robotics, University of Michigan
†Department of Mechanical Engineering, University of Michigan
Code is available at https://github.com/lihanlian/

trajectory-tracking-ilc

MPC requires long enough horizons and accurate models
to achieve desired performance. However, disturbance
and noise almost always exist and it might be difficult or
even impossible to get an accurate model, especially for
a complex system. Due to factors like part degradation,
internal friction and manufacturing tolerance, it is very
likely that the model used for mobile robots controller
becomes inconsistent with the actual model of robot.

Iterative learning control (ILC) is another powerful
approach for various tasks, especially for the case when
robot needs to do it repetitively. For trajectory tracking
task, ILC uses history of tracking error and control input
from previous iterations to update control input at next
iteration. We study both mode-based and model-free
ILC, as well as the condition required for model-based
ILC error convergence.

This project aims to analyze and compare the per-
formance of different methods on a trajectory tracking
problem with the existence of model mismatch. 2D
double-integrator model is used for robot dynamics and
the observable states are position in x and y coordinate.
Four approaches, including MPC, two model-based ILC
and one model-free ILC are investigated. All algorithms
and simulations are implemented in MATLAB.

B. Related Work
1) Model Predictive Control: Many MPC schemes

have been developed and applied to trajectory track-
ing. An adaptive learning model predictive control
(ALMPC) scheme is proposed for input-constrained tra-
jectory tracking of perturbed autonomous ground vehi-
cles (AGVs) [1]. Another study about MPC controller
based on fuzzy adaptive weight control algorithm is pro-
posed for autonomous vehicles since tracking accuracy
and dynamic stability are both guaranteed [2]. MPC
based trajectory tracking is also applied to autonomous
vehicles to compute the optimal forces and moment the
vessel needs for path [3].

2) Iterative Learning Control: ILC is also a powerful
method can be used for path tracking [4]. A novel PD-
type iterative learning controller is used on pneumatic
X-Y table system to perform path tracking and reject dis-
turbance [5]. ILC is also utilized in perspective dynamic

1

https://github.com/lihanlian/trajectory-tracking-ilc
https://github.com/lihanlian/trajectory-tracking-ilc

2

system (PDS) to overcome uncertainties in trajectory
tracking of mobile service robots [6]. The combination
of adaptive ILC and neural networks is proposed to
overcome the limitation of required nominal parameters
to improve efficiency of trajectory tracking in [7]. By
nature of ILC, it shares many similarities as discussed
in [8]. However, most of the work does not discuss on
the case of model-mismatch or the convergence criterion
on model-based ILC when model-mismatch exists.

C. Paper Structure

The report is organized as follows: section II in-
troduces the problem to be solved, including refer-
ence trajectory, system dynamics and trajectory tracking
methods. Section III explains the algorithms of different
methods in detail. Section IV discusses the performance
of different strategies and the conditions on model-based
ILC error convergence. Section IV concludes the report
by pointing out limitations and shed lights on further
investigations can be done for improvement.

II. PROBLEM STATEMENT

Trajectory Reference

The reference trajectory is a circular path starting from
origin. It has a radius of 1 and centers at (-1,0). Both
start and end point are the origin. The mobile robot starts
and stops at origin with zero velocity at each iteration.
Suppose the moving angle relative to the center between
current robot position and the starting point is θ and each
task takes 10 seconds. We choose θ̇ to be a quadratic
equation with respect to time as follows:

θ̇ = −3πt2

250
+

3πt

25
(1)

Note θ̇ is 0 when t = 0 and t = 10, and area enclosed
by the curve and x-axis is 2 pi. The moving angle
θ is calculated by integration. Therefore, the trajectory
reference is represented as

px = cos(θ)− 1 (2)
py = sin(θ) (3)

where px and py are the position of the robot at x and
y direction. Blue curve in Figure 1 and Figure 2 show
the reference against time in 1D and 2D plane.

System Dynamics

This project uses a 2D double-integrator model for
system dynamics, which is common for mobile robots.
The state space contains fours state variables:

x = [x, ẋ, y, ẏ]T

Fig. 1: Trajectory reference and MPC result against time

Fig. 2: Trajectory reference and DC result in 2D plane

where x, y are the position in x and y direction, ẋ and ẏ
are the velocity in the x and y direction. The idealized
continuous double integrator model is represented as

ẋ = Ax+Bu (4)

y = Cx (5)

where control input u is the acceleration in x and y
direction. The output y is chosen to be the position. The
matrices for nominal (idealized) continuous system can
be written as

Anominal =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 Bnominal =

0 0

1 0

0 0

0 1

3

Cnominal =

[
1 0 0 0

0 0 1 0

]
The idealized double-integrator model is different

from the actual system because of inner friction, vibra-
tion, etc. In this project, the A matrix for actual robot
system in continuous time is set to be

Aactual =

0 0.8 0 0

0 0 0 0

0 0 0 0.8

0 0 0 0

This project uses both the nominal (idealized) model

and actual model to test the performance of different
trajectory tracking strategies.

Since the algorithms are implemented in MATLAB
with discrete time data, the continuous model is trans-
formed into discrete form. The discrete system model is
represented as below

xk+1 = Adxk +Bduk (6)

yk = Cxk (7)

where Ad and Bd are the matrices in discrete time
corresponds to the the matrices A and B of 2D double-
integrator model in continuous time. Sampling time is
chosen to be 0.1 second.

Suppose the discrete system has N time steps in state
and control input. The output at step k can be written
as:

yk = CAk
dx0 + C

k−1∑
m=0

Ak−1−m
d Bdum (8)

The equation mapping the control input U and output
trajectory Y at all time steps is:

Y = GU + d (9)

where Y = [y1 y2 . . . yN]T , U = [u0 u1 . . . uN−1]
T

G =

CBd 0 . . . 0

CAdBd CBd . . . 0
...

...
. . .

...
CAN−1

d Bd CAN−2
d Bd . . . CBd

d =

CA0

dx0

CA1
dx0

...
CAN

d x0

Trajectory Tracking

MPC is one of the control algorithms commonly used
for trajectory tracking. Figure 3 shows the working
principle of MPC. It solves a series control input by

Fig. 3: MPC block diagram

Fig. 4: ILC block diagram

optimizing cost function at each time step in a receding
horizon fashion. The prediction horizon N is often set
in advance, and the cost function J is a function of state
variable x and control input u at time step k = 0 . . . N
as shown follows:

u∗ = min
k0:N−1,u0:N−1

J(xk, uk)

s.t. xk+1 = Adxk +Bduk,

umin ≤ uk ≤ umax,

where xk+1 = Adxk + Bduk stands for the constraints
of system dynamics and umin ≤ uk ≤ umax stands
for the constraints on actuator limits. The project also
uses different algorithms of ILC. This method improves
tracking performance by learning the history of control
input and tracking error from previous iterations. Figure
4 illustrates the working principle of ILC.

Before using ILC, direct collocation (DC) is used
to generate the initial control input. DC is a typical
trajectory optimization technique by choosing a series
of states and constraints along the reference to calculate
control input. Figure 2 shows the difference between
reference trajectory and the path resulting from DC. The
corresponding initial control is then used for the first
iteration of ILC to refine control input.

4

Fig. 5: Resulting trajectory of MPC algorithm and ref-
erence trajectory.

III. METHODS

A. MPC Formulation

MPC is an optimal control technique that utilizes
the plant model and objective function to calculate
control input by solving optimization problems. In this
case, the cost function is designed to be a quadratic
function to penalize both tracking error and control
effort. Constraints on actuator limits are also applied.
The MPC controller uses the nominal model for
optimization while the robot states get updated using
the actual model. The simulation algorithm is shown as
in algorithm 1.

Algorithm 1 MPC

xk := x0

J = (yref − y)TQ(yref − y) + uTRu
for k = 0 : N do

yk = Cactualxk

uk = mpc(Anominal, Bnominal, Cnominal, J, yrefk)
xk+1 = Aactualxk +Bactualuk

xk = xk+1

k = k + 1

Here x0 and yref are the same initial state and
reference trajectory for each repetitive task. N is the
total time step that is also same for finishing each task.
Tracking result is shown in Fig. 1 and Fig. 5

B. Direct Collocation

Direct collocation (DC) is a common trajectory
optimization method. It discretizes the system dynamics
to turn the infinite dimensional optimization problem
into a finite dimensional problem. The output of DC
is then used as the initial control input u0 for the first

iteration of both model-based and model-free ILC.
Below shows the formulation of DC.

min
uk:N−1

N−1∑
k=0

(
uT
k uk

)
s.t. xk+1 = Anominalxk +Bnominaluk,

umin ≤ uk ≤ umax,

xN/4 = [−1, 1]T ,

xN/2 = [−2, 0]T ,

x3N/4 = [−1,−1]T ,

x0 = xstart,

xN = xgoal,

where N is the same total number of time steps as
MPC. Besides the constraints on system dynamics (us-
ing nominal model), control input (same actuator limit
as MPC), only five additional waypoints are imposed
(including initial state and final state) as constraints.
Three waypoints (−1, 1), (−2, 0) and (1,−1) are set
to be achieve at k = N

4 ,
N
2 ,

3N
4 respectively. x0 and

xN correspond to start and end state. Note that these
constraints may not be the exact time when these way-
points are achieved on the reference trajectory. DC is
only used for generating initial control input for our
purpose. The control input will later be refined by ILC,
thus, it has lower requirement on constraints resolution
and accuracy. Since DC is computed off-line, it is also
less computational intensive than MPC.

C. Model-Based ILC
Two methods are investigated for model-based ILC

algorithms. They both essentially solving the same opti-
mization problem using nominal model in the iteration
domain. One is based on quadratic programming (ILC-
QP) and the other one is based on LQR (ILC-LQR).
Here provide the pseudocode for both algorithms.

Algorithm 2 ILC-QP

u := u0

ek = 1, k = 0
Aeq = Gnominal, beq = zeros
H = I
while ek > 0.01 do

yk = Gactualuk + dactual
ek = yref − yk
∆(u) = quadprog(H,Aeq, beq)
uk = uk +∆(u)
k = k + 1

In ILC-QP, H is a matrix used for constructing the
quadratic cost function, Aeq and beq are the matrices for

5

constructing the equality constraints. ek is the tracking
error at iteration k. ∆(u) is then solved by quadprog
function in MATLAB and added to variable uk (control
input at iteration k) to improve the control input.

Algorithm 3 ILC-LQR

u := u0

ek = 1, k = 0
A = I,B = −Gnominal

Q = 10 ∗ I,R = 0.1 ∗ I
K = dlqr(A,B,Q,R)
while ek > 0.01 do

yk = Gactualuk + dactual
ek = yref − yk
∆(u) = −Kek
uk = uk +∆(u)
k = k + 1

In ILC-LQR, Q and R are matrices that assign weight
to the penalty on tracking error and change of control
input respectively. Matrices A and B essentially impose
the same equality constraint as ILC-QP. Gain matrix K is
solved by dlqr function in MATLAB, and then multiply
with tracking error to get ∆(u).

D. Model-Free ILC

The model-free ILC does not require a model of
the robot as its name suggest. It uses the inverse time
operator τ to get the adjoint of matrix Gactual, and adjust
the control input in a gradient-descent manner using
learning rate α. Note that since the robot start with zero
initial state (zero velocity at origin), the constant term
dactual becomes zero, which simplifies the process of
calculating matrix adjoint as shown in algorithm 4.

IV. DISCUSSION

Comparison on Performance

MPC is not able to utilize the history of control input
and tracking error, thus, it repeats the same error at every
iteration, and tracking error does not converge to zero.
Thus, in this scenario, MPC is the worst algorithms
based on the metric of required model accuracy and
convergence speed.

With information provided from nominal model,
model-based ILC covnerges much faster than model-free
ILC as shown in table I. By solving the optimization
problem to get ∆(u) in the process of model-based ILC,
it can be viewed as a type of model based policy gradient
method.This is similar to one of the reinforcement learn-
ing algorithm called Deep Deterministic Policy Gradient
(DDPG) as shown in Fig. 6. In this scenario, robot
acts like the critic network that provide the feedback to

Algorithm 4 ILC-MF

u := u0, uprev = 0
e = 1, k = 0
G∗eprev = 0, τ = fliplr(I)
while e > 0.01 do

yk = Gactualuk + dactual
e = yref − yk
G∗e = τGactualτe
∆hi = G∗e−G∗eprev
∆ui = u− uprev

if ∆hT
i ·∆ui ≥ 0 then

α = 0.01
else

α = −∆hT
i ·∆ui/(∆hT

i ·∆hi)

uprev = u
G∗eprev = G∗e
u = u+ αG∗e
k = k + 1

Controller Model Required Convergence Speed

MPC Most Accurate No Convergence
ILC-QP Less Accurate < 10 iterations

ILC-LQR Less Accurate < 10 iterations
ILC-MF Not Needed > 200 iterations

TABLE I Performance comparison for all algorithms.

each action (control input), and the goal is to minimize
the tracking error, similar to maximizing the Q value
in DDPG. Controller acts as the actor, and it uses the
feedback from robot (tracking error) to improve the
control policy over iterations.

Convergence Criterion on Model-Based ILC

Model-based ILC has been shown to have better
convergence rate compare to model-free ILC. However,

Fig. 6: Actor-Critic algorithm illustration.

6

it does not work on any nominal model, especially
when the nominal model is too far from the actual
model. Here we quantify the criteria of nominal model
to guarantee model-based ILC algorithm trakcing error
convergence.

For system with actual plant model Gactual, state
update can be described as follows:

xk = Gactualuk + dactual (10)

xk+1 = Gactualuk+1 + dactual (11)

Subtracting Eq. 10 from Eq. 11 we can then get the error
dynamics in iteration domain as shown in Eq. 14:

xk+1 − xk = Gactual(uk+1 − uk) (12)

xk+1 − xref + xref − xk = Gactual∆uk (13)

ek+1 = ek −Gactual∆uk (14)

Here ∆uk = uk+1 − uk, ek = xref − xk and
ek+1 = xref−xk+1. In the previously discussed ILC-QP
and ILC-LQR algorithms, they ultimately boil down to
satisfying the fundamental constraint shown as Eq. 15.

ek = Gnominal∆u (15)

Assuming Gnominal is invertible, then the follow relation
can be obtained.

∆u = G−1
nominalek (16)

Substitute Eq. 16 into Eq. 14, the error dynamics in
iteration domain can be rewritten as follows.

ek+1 = ek −GactualG
−1
nominalek (17)

Thus, based on the theorem of contraction mapping, the
condition for error convergence is

||I −GactualG
−1
nominal|| < 1 (18)

and error is guaranteed to be monotonically decreasing
if Eq. 18 is satisfied.

V. CONCLUSION

MPC and three types of ILC algorithms are studied
for a robot reference trajectory tracking task with the
existence of model mismatch in this study. ILC demon-
strates the advantage for the case of doing repetitive task
and model-based ILC can have much better convergence
property compare to model-free ILC, if the condition on
nominal model is satisfied. One limitation of this study
is that control input constraint is not considered in the
ILC algorithm. In addition, tracking error is not mono-
tonically decreasing for model-free ILC, potentially due
to the learning rate may not be appropriate at each
iteration. Thus, future work can be designing learning
function L(q) and Q filter [9] to improve model-free
ILC algorithm. Disturbance and noise can also be added
to extend the work.

REFERENCES

[1] K. Zhang, Q. Sun, and Y. Shi, “Trajectory tracking control of
autonomous ground vehicles using adaptive learning mpc,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32,
no. 12, pp. 5554–5564, 2021.

[2] H. Wang, B. Liu, X. Ping, and Q. An, “Path tracking control for
autonomous vehicles based on an improved mpc,” IEEE Access,
vol. 7, pp. 161 064–161 073, 2019.

[3] H. Zheng, R. R. Negenborn, and G. Lodewijks, “Trajectory
tracking of autonomous vessels using model predictive control,”
IFAC Proceedings Volumes, vol. 47, no. 3, pp. 8812–8818,
2014, 19th IFAC World Congress. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1474667016430041

[4] K. L. Moore, Y. Chen, and H.-S. Ahn, “Iterative learning control:
A tutorial and big picture view,” in Proceedings of the 45th IEEE
Conference on Decision and Control. San Diego, CA, USA:
IEEE, Dec. 2006.

[5] C.-K. Chen and J. Hwang, “Pd-type iterative learning control for
trajectory tracking of a pneumatic x-y table with disturbances,”
in IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004, vol. 4, 2004, pp. 3500–3505
Vol.4.

[6] W. Yugang, Z. Fengyu, Z. Yang, L. Ming, and Y. Lei,
“Iterative learning control for path tracking of service robot
in perspective dynamic system with uncertainties,” International
Journal of Advanced Robotic Systems, vol. 17, no. 6, p.
1729881420968528, 2020. [Online]. Available: https://doi.org/10.
1177/1729881420968528

[7] M. Yamakita, M. Ueno, and T. Sadahiro, “Trajectory tracking
control by an adaptive iterative learning control with artificial
neural networks,” in Proceedings of the 2001 American Control
Conference. (Cat. No.01CH37148), vol. 2, 2001, pp. 1253–1255
vol.2.

[8] Y. Zhang, B. Chu, and Z. Shu, “A preliminary study on the
relationship between iterative learning control and reinforcement
learning,” in IFAC-PapersOnLine, vol. 52, no. 29, IFAC (Interna-
tional Federation of Automatic Control). Elsevier Ltd., 2019, pp.
314–319.

[9] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of
iterative learning control,” IEEE Control System Magazine, 2006.

VI. APPENDIX

A. Error Convergence Results

Convergence results are shown for ILC-QP, ILC-
LQR and ILC-MF algorithms. All figures can be re-
produced by the code at https://github.com/lihanlian/
trajectory-tracking-ilc.

Fig. 7: Change of tracking error over iterations for ILC-
QP algorithm.

https://www.sciencedirect.com/science/article/pii/S1474667016430041
https://www.sciencedirect.com/science/article/pii/S1474667016430041
https://doi.org/10.1177/1729881420968528
https://doi.org/10.1177/1729881420968528
https://github.com/lihanlian/trajectory-tracking-ilc
https://github.com/lihanlian/trajectory-tracking-ilc

7

Fig. 8: Change of tracking error over iterations for ILC-
LQR algorithm.

Fig. 9: Change of tracking error over iterations for ILC-
MF algorithm.

	Introduction
	Problem Statement
	Methods
	Discussion
	Conclusion
	References
	Appendix

